Your browser doesn't support the features required by impress.js, so you are presented with a simplified version of this presentation.

For the best experience please use the latest Chrome, Safari or Firefox browser.

\[ \newcommand{\IR}{\mathbb{R}} \newcommand{\IRnn}{\IR_{\geq 0}} \newcommand{\IRp}{\IR_{\gt 0}} \newcommand{\IN}{\mathbb{N}} \newcommand{\INo}{\IN_0} \newcommand{\INs}{\IN^\ast} \newcommand{\coloneqq}{\mathbin{:=}} \newcommand{\eqqcolon}{\mathbin{=:}} \newcommand{\coloniff}{\mathbin{:\!\!\iff}} \newcommand{\dcup}{\mathbin{\dot\cup}} \newcommand{\sMid}{\,|\,} \newcommand{\Set}[1]{\left\lbrace#1\right\rbrace} \newcommand{\SMid}{\,\middle|\,} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\Abs}[1]{\left\lvert#1\right\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\Norm}[1]{\left\lVert#1\right\rVert} \newcommand{\PSet}[1]{2^{#1}} \newcommand{\transp}{^\top} \newcommand{\eps}{\varepsilon} \]

§4 Congestion Games

  • finite set of players $N$
  • finite set of resources $R$
  • sets of strategies $S_i \subseteq \IR^R$
  • $\ell: S \to \IR^R, s \mapsto \ell(s) \coloneqq \sum_{i \in N}s_i$ load/congestion vector
  • player specific, load-dependent, per-unit resource costs $c_i: \IR^R \to \IR^R$
  • players' cost functions $\pi_i: S \to \IR, s \mapsto s_i\transp c_i(\ell(s)) = \sum_{r \in R}s_{i,r}c_{i,r}(\ell(s))$
generic congestion game $(N,S,\pi)$   (cost minimization game!)
N = \{ \color{var(--pl1col)}1 \color{var(--pl2col)}2 \} \color{var(--pl1col)}S_1 = \{\hspace{1.2cm},\hspace{1.2cm}\} \color{var(--pl2col)}S_2 = \{\hspace{1.2cm},\hspace{1.2cm}\} \color{gray}r_1 \color{gray}r_2 \color{gray}r_3 \color{gray}r_4 \color{black}\ell_{r_2} \small\color{black}c_{r_2,\color{var(--pl1col)}1}(\ell(s)) \color{black}\cdot
  • unweighted congestion game
$\coloniff S_i \subseteq \set{0,1}^R$
  • weighted congestion game
$\coloniff S_i \subseteq \set{0,d_i}^R$
  • player-independent/homogeneous costs
$\coloniff \forall i,j \in N: c_i = c_j$
  • separable costs
$\coloniff \ell_r(s) = \ell_r(s') \implies c_{i,r}(\ell(s)) = c_{i,r}(\ell(s'))$
\small\color{var(--pl2col)}o_2 \small\color{var(--pl1col)}o_1 \small\color{var(--pl2col)}d_2 \small\color{var(--pl1col)}d_1 \small\color{black}4+x \small\color{black}1 \small\color{black}1+x^2 \small\color{black}1 \small\color{black}1 \small\color{black}x \small\color{black}3+2x
$(5,5)$$(4,5)$
$(5,4)$$(7,7)$
$D=(V,E)$
$R=E$

§4.2 Unweighted Congestion Games

Here: Only unweighted congestion games (with separable, homog. cost functions)
⤳ have resource cost functions $c_r: \INo \to \IR$ and
set of resources used by player $i$ (under $s_i$) $R(s_i) \coloneqq \set{r \in R \sMid s_{i,r} = 1}$
⤳ $\pi_i(s) = \sum_{r \in R(s_i)}c_r(\ell_r(s)) = \sum_{r \in R(s_i)}c_r(\abs{\set{j \in N \sMid r \in R(s_j)}})$
Thm. 4.5: Every unweighted congestion game has a pure NE.
Thm. 4.5: Every unweighted congestion game is exact potential game.
  Rosenthal potential $P(s) \coloneqq \sum_{r \in R}\sum_{k=1}^{\ell_r(s)}c_r(k)$
Thm. 4.13: Every exact potential game is isomorphic to unweighted congestion game.

games $G=(N,S,u)$, $H=(N,T,v)$ are isomorphic if $\exists \phi_i: S_i \to T_i$ bijections s.th. $\forall i \in N, s \in S: u_i(s) = v_i(\phi_1(s_1), \dots, \phi_n(s_n))$.

Thm. 3.10: $G$ has exact potential iff $\exists G^C=(N,S,u^C), G^D=(N,S,u^D)$ s.th. $G=G^C+G^D$, i.e., $u_i = u^C_i + u^D_i$, and
  1. $G^C$ coordination game, i.e., $u^C_i = u_j^C$
  2. $G^D$ dummy game, i.e., $u^D(.,s_{-i}) = \mathrm{const.}$

Lem. 4.8: Every coordination game is isomorphic to unweighted congestion game
Lem. 4.10: Every dummy game is isomorphic to unweighted congestion game
coord. game $G=(N,S,u)$ $\mapsto$ cong. game $H=(N,T,\pi)$:
  • $R \coloneqq S$
  • $R(T_i) \coloneqq \Set{\bigcup_{s_{-i} \in S_i}\set{(s_i,s_{-i})} \SMid s_i \in S_i}$
  • $c_s(k) \coloneqq \begin{cases}u_i(s) \text{ for any } i \in N, &\text{if } k = n\\0, &\text{else}\end{cases}$
dummy. game $G=(N,S,u)$ $\mapsto$ cong. game $H=(N,T,\pi)$:
  • $R \coloneqq \bigcup_{i \in N}S_{-i}$
  • $R(T_i) \coloneqq \Set{S_{-i} \cup \bigcup_{j \neq i}\set{s'_{-j} \in S_{-j} \sMid s_i' \neq s_i} \SMid s_i \in S_i}$
  • $c_{s_{-i}}(k) \coloneqq \begin{cases}u_i(s_i,s_{-i}) \text{ for any } s_i \in S_i, &\text{if } k = 1\\0, &\text{else}\end{cases}$
\class{TLtext}{\small TL} \class{TCtext}{\small TC} \class{TRtext}{\small TR} \class{BLtext}{\small BL} \class{BCtext}{\small BC} \class{BRtext}{\small BR} \small\color{var(--stratTcol)}\phi_1(T) \small\color{var(--stratBcol)}\phi_1(B) \small\color{var(--stratLcol)}\phi_2(L) \small\color{var(--stratCcol)}\phi_2(C) \small\color{var(--stratRcol)}\phi_2(R) 0 1 2 2 3 4
LCR
T$(0,0)$$(1,1)$$(2,2)$
B$(2,2)$$(3,3)$$(4,4)$
\class{Ttext}{\small T\_} \class{Btext}{\small B\_} \class{Ltext}{\small \_L} \class{Ctext}{\small \_C} \class{Rtext}{\small \_R} \small\color{var(--stratTcol)}\phi_1(T) \small\color{var(--stratBcol)}\phi_1(B) \small\color{var(--stratLcol)}\phi_2(L) \small\color{var(--stratCcol)}\phi_2(C) \small\color{var(--stratRcol)}\phi_2(R) 2 3 0 1 3
LCR
T$(0,2)$$(1,2)$$(3,2)$
B$(0,3)$$(1,3)$$(3,3)$
LCR
T$(0+0,0+2)$$(1+1,1+2)$$(2+3,2+2)$
B$(2+0,2+3)$$(3+1,3+3)$$(4+3,4+3)$
Computational Game Theory (WiSe25/26), §4 Congestion Games
Lukas Graf (lukas.graf@uni-passau.de)
↑ All Slides