§4 Congestion Games
finite set of players $N$
finite set of resources $R$
sets of strategies $S_i \subseteq \IR^R$
$\ell: S \to \IR^R, s \mapsto \ell(s) \coloneqq \sum_{i \in N}s_i$ load/congestion vector
player specific, load-dependent, per-unit resource costs $c_i: \IR^R \to \IR^R$
players' cost functions $\pi_i: S \to \IR, s \mapsto s_i\transp c_i(\ell(s)) = \sum_{r \in R}s_{i,r}c_{i,r}(\ell(s))$
⤳ generic congestion game $(N,S,\pi)$ (cost minimization game!)
N = \{
\color{var(--pl1col)}1
\color{var(--pl2col)}2
\}
\color{var(--pl1col)}S_1 = \{\hspace{1.2cm},\hspace{1.2cm}\}
\color{var(--pl2col)}S_2 = \{\hspace{1.2cm},\hspace{1.2cm}\}
\color{gray}r_1
\color{gray}r_2
\color{gray}r_3
\color{gray}r_4
\color{black}\ell_{r_2}
\small\color{black}c_{r_2,\color{var(--pl1col)}1}(\ell(s))
\color{black}\cdot
unweighted congestion game $\coloniff S_i \subseteq \set{0,1}^R$
$\coloniff S_i \subseteq \set{0,d_i}^R$
player-independent/homogeneous costs $\coloniff \forall i,j \in N: c_i = c_j$
$\coloniff \ell_r(s) = \ell_r(s') \implies c_{i,r}(\ell(s)) = c_{i,r}(\ell(s'))$
\small\color{var(--pl2col)}o_2
\small\color{var(--pl1col)}o_1
\small\color{var(--pl2col)}d_2
\small\color{var(--pl1col)}d_1
\small\color{black}4+x
\small\color{black}1
\small\color{black}1+x^2
\small\color{black}1
\small\color{black}1
\small\color{black}x
\small\color{black}3+2x
$D=(V,E)$
$R=E$
§4.2 Unweighted Congestion Games
Here: Only unweighted congestion games (with separable, homog. cost functions)
⤳ have resource cost functions $c_r: \INo \to \IR$ and
⤳ set of resources used by player $i$ (under $s_i$) $R(s_i) \coloneqq \set{r \in R \sMid s_{i,r} = 1}$
⤳ $\pi_i(s) = \sum_{r \in R(s_i)}c_r(\ell_r(s)) = \sum_{r \in R(s_i)}c_r(\abs{\set{j \in N \sMid r \in R(s_j)}})$
Thm. 4.5: Every unweighted congestion game has a pure NE.
Thm. 4.5: Every unweighted congestion game is exact potential game.
Rosenthal potential $P(s) \coloneqq \sum_{r \in R}\sum_{k=1}^{\ell_r(s)}c_r(k)$
Thm. 4.13: Every exact potential game is isomorphic to unweighted congestion game.
games $G=(N,S,u)$, $H=(N,T,v)$ are isomorphic if $\exists \phi_i: S_i \to T_i$ bijections s.th.
$\forall i \in N, s \in S: u_i(s) = v_i(\phi_1(s_1), \dots, \phi_n(s_n))$.
Thm. 3.10: $G$ has exact potential iff $\exists G^C=(N,S,u^C), G^D=(N,S,u^D)$ s.th. $G=G^C+G^D$, i.e., $u_i = u^C_i + u^D_i$, and
$G^C$ coordination game , i.e., $u^C_i = u_j^C$
$G^D$ dummy game , i.e., $u^D(.,s_{-i}) = \mathrm{const.}$
Lem. 4.8: Every coordination game is isomorphic to unweighted congestion game
Lem. 4.10: Every dummy game is isomorphic to unweighted congestion game
coord. game $G=(N,S,u)$ $\mapsto$ cong. game $H=(N,T,\pi)$:
$R \coloneqq S$
$R(T_i) \coloneqq \Set{\bigcup_{s_{-i} \in S_i}\set{(s_i,s_{-i})} \SMid s_i \in S_i}$
$c_s(k) \coloneqq \begin{cases}u_i(s) \text{ for any } i \in N, &\text{if } k = n\\0, &\text{else}\end{cases}$
dummy. game $G=(N,S,u)$ $\mapsto$ cong. game $H=(N,T,\pi)$:
$R \coloneqq \bigcup_{i \in N}S_{-i}$
$R(T_i) \coloneqq \Set{S_{-i} \cup \bigcup_{j \neq i}\set{s'_{-j} \in S_{-j} \sMid s_i' \neq s_i} \SMid s_i \in S_i}$
$c_{s_{-i}}(k) \coloneqq \begin{cases}u_i(s_i,s_{-i}) \text{ for any } s_i \in S_i, &\text{if } k = 1\\0, &\text{else}\end{cases}$
\class{TLtext}{\small TL}
\class{TCtext}{\small TC}
\class{TRtext}{\small TR}
\class{BLtext}{\small BL}
\class{BCtext}{\small BC}
\class{BRtext}{\small BR}
\small\color{var(--stratTcol)}\phi_1(T)
\small\color{var(--stratBcol)}\phi_1(B)
\small\color{var(--stratLcol)}\phi_2(L)
\small\color{var(--stratCcol)}\phi_2(C)
\small\color{var(--stratRcol)}\phi_2(R)
0
1
2
2
3
4
\class{Ttext}{\small T\_}
\class{Btext}{\small B\_}
\class{Ltext}{\small \_L}
\class{Ctext}{\small \_C}
\class{Rtext}{\small \_R}
\small\color{var(--stratTcol)}\phi_1(T)
\small\color{var(--stratBcol)}\phi_1(B)
\small\color{var(--stratLcol)}\phi_2(L)
\small\color{var(--stratCcol)}\phi_2(C)
\small\color{var(--stratRcol)}\phi_2(R)
2
3
0
1
3